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APPENDIX OVERVIEW

This appendix provides additional details and analyses to complement the main paper. It is organized
as follows:

• Section A. Use of Large Language Models. We clarify the extent to how LLMs were
used during the writing and proofreading process, ensuring transparency in compliance
with conference policies.

• Section B. Background on Adversarial Attacks and Defenses. We review standard ad-
versarial attacks (e.g., PGD, AutoAttack, BPDA) and defense paradigms (adversarial train-
ing, purification), offering context for how our method relates to existing approaches.

• Section C. Theoretical Supplement. We provide a more complete derivation of diffusion
models, present a unified mathematical framework for adversarial purification, and analyze
the computational complexity and stability of different approaches.

• Section D. Experimental Settings. We detail the hyperparameter choices for both attacks
and diffusion models, including perturbation budgets, iteration numbers, noise schedules,
and pretrained checkpoints, ensuring reproducibility of all results.

• Section E. Additional Experimental Results. We extend the evaluations beyond the main
text. This includes: (i) a step-by-step algorithmic workflow of our framework. (ii) classifi-
cation with alternative backbones (CLIP-RN101, WRN-28-10,RN-50), (iii) plug-and-play
integration under ℓ2 attacks, (iv) analysis of PGD iteration numbers, and

• Section F. Visualization. We provide additional qualitative results, showing purified ver-
sus adversarial samples across multiple datasets, highlighting the semantic preservation and
noise suppression of our method.

A STATEMENT ON THE USE OF LLMS

This study employed LLMs to assist in writing. LLMs were primarily utilized for language refine-
ment, grammatical corrections, and enhancing academic tone. It is crucial to emphasize that all
viewpoints, theoretical frameworks, experimental results, and final conclusions were independently
developed by human authors. LLMs served solely as auxiliary tools for manuscript refinement, with
all final drafts thoroughly reviewed and approved by the authors.

B SUPPLEMENT RELATED WORK

Adversarial Attacks & Robustness. Adversarial attacks have long revealed the fragility of neural
networks, beginning with the discovery of imperceptible perturbations by Szegedy et al. (2013) and
the efficient one-step FGSM attack (Goodfellow et al., 2014). Iterative methods such as PGD (Madry
et al., 2017) established strong benchmarks for robustness evaluation, later extended by efficient
variants like FreeAT (Shafahi et al., 2019) and AutoAttack (Croce & Hein, 2020). The use of EOT
(Expectation over Transformation) (Athalye et al., 2018) was further emphasized to mitigate ran-
domness and non-differentiability in gradients, ensuring accurate robustness assessment. On the
defense side, adversarial training (Schlarmann et al., 2024; Mao et al., 2023) remains the most
widely used strategy. By incorporating adversarial examples into the training process, AT explicitly
improves the decision boundary against perturbations, thereby enhancing robustness. However, AT
requires significant computational resources and often generalizes poorly to unseen attacks, moti-
vating research into alternative approaches.AP emerged in response to this situation.

C THEORETICAL SUPPLEMENT

C.1 UNIFIED FRAMEWORK FOR ADVERSARIAL PURIFICATION

We can unify diffusion-based adversarial purification methods into the following generalized for-
mulation:

xt = f(x0; ᾱt) + g(ϵ;W), (15)
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where f(x0; ᾱt) =
√
ᾱt x0 denotes the signal decay term, g(ϵ;W) represents noise injection, and

W is a weighting or transformation operator.

• Adversarial Training: robustness stems from model parameters; no explicit g(·) is intro-
duced.

• DiffPure: g(ϵ;W) =
√
1− ᾱt ϵ, where W = I .

• MANI-Pure: g(ϵ;W) =
√
1− ᾱt(W ⊙ ϵ), where W is derived from frequency magni-

tudes.
• FreqPure: constraints are imposed in the reverse step, by spectral recombination rather

than forward-side weighting.

This unified framework highlights a key dichotomy: forward-side approaches redesign g(·) to better
mimic adversarial distributions, while reverse-side approaches constrain the reconstruction trajec-
tory. MANI-Pure naturally combines both perspectives, explaining its superior performance.

C.2 COMPLEXITY AND STABILITY ANALYSIS

Time Complexity:

• DiffPure: O(T ·HW ) per reverse trajectory, dominated by neural network inference.
• MANI-Pure: adds DFT/IDFT operations of O(HW log(HW )) per step, negligible com-

pared to network cost.
• FreqPure: incurs extra spectral recombination and projection, but all operations are

element-wise or FFT-based, remaining parallelizable on GPUs.
• Hybrid methods (e.g., MANI+FreqPure): maintain linear scaling in T and near-constant

overhead relative to the diffusion backbone.

Space Complexity:

• All methods store O(HW ) activations per step.
• Frequency-based approaches require one additional complex-valued copy of the spectrum,

i.e., O(2HW ), which is marginal compared with feature maps inside the denoiser.

Numerical Stability:

• FFT and inverse FFT are unitary transforms, introducing no instability.
• MANI’s band-wise weighting may amplify small magnitudes, but normalization with ϵ

ensures bounded variance.
• FreqPure’s projection operator Π(·) restricts phase drift, effectively stabilizing the reverse

trajectory under strong attacks.

Scalability. Since the extra overhead scales sub-linearly with resolution (log(HW )), frequency-
domain operations remain efficient even for high-resolution ImageNet-1K images. Therefore, the
proposed MANI-Pure achieves robustness gains without sacrificing efficiency.

D PARAMETERS AND SETTINGS

D.1 ATTACK SETUP

We adopt three types of strong adaptive attacks: PGD+EOT, AutoAttack, and BPDA+EOT. For
PGD and BPDA, the number of iterations is set to 10 (the rationale for this choice is discussed in
Appendix E.4), while the number of EOT samples is also set to 10. AutoAttack is executed in its
standard version, which integrates APGD-CE, APGD-DLR, FAB, and Square Attack, with 100
update iterations. The perturbation budget is ϵ = 8/255 for ℓ∞ attacks on CIFAR-10 and ϵ = 4/255
on ImageNet-1K, while ℓ2 attacks use ϵ = 0.5 for both datasets. Unless otherwise specified, the step
size is set to 0.007 for all attacks.
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D.2 DIFFUSION SETUP

Our purification framework is based on DDPM++ (Song et al., 2020) with a linear variance schedule,
where the noise variance increases from β1 = 10−4 to βT = 0.02 over T = 1000 steps (Ho et al.,
2020). In all experiments, we set the forward noising steps to 100 and the reverse denoising steps
to 5, unless otherwise specified. For DiffPure, we follow the original implementation and use 100
reverse steps. The pretrained diffusion weights are taken from public releases: the unconditional
CIFAR-10 checkpoint of EDM (Karras et al., 2022) and the 256 × 256 unconditional diffusion
checkpoint for ImageNet-1K, consistent with prior works.

D.3 NOISE DIFFERENCE HEATMAP COMPUTATION

To analyze the similarity between injected noise Ninj and adversarial noise Nadv, we compute their
pixel-wise difference:

D = Ninj −Nadv. (16)

Here D contains both positive and negative values, where the sign indicates whether the injected
noise is larger or smaller than the adversarial noise at each pixel. For visualization, we normal-
ize D and render it with a diverging colormap, where red/blue colors represent positive/negative
differences, respectively.

E ADDITIONAL RESULTS

E.1 THE ALGORITHM WORKFLOW OF MANI-PURE

This section presents the MANI-Pure algorithm flowchart (Algorithm 1), which comprehensively
illustrates the entire processing workflow. This contrasts with the section-by-section module intro-
ductions in Sec. 3.2 and the abstract representation in Figure 2.

Algorithm 1 Adversarial Purification with MANI and FreqPure

Require: Adversarial input xadv, Diffusion steps T , Band number n, Weighting factor γ
Ensure: Purified image x0

1: (Aadv,Φadv) = F(xadv)
2: Partition Madv into n frequency bands {Bi} // Forward Progress:MANI
3: for each band Bi do
4: Mi =

1
|Bi|

∑
(u,v)∈Bi

Aadv(u, v)

5: wi = (Mi + ϵ0)
−γ

6: end for
7: Construct spatial weight map W via IDFT
8: ϵt = W ⊙ ϵG, with ϵG ∼ N (0, I)
9: xt =

√
ᾱt xadv +

√
1− ᾱt ϵt

10: Initialize xT ∼ N (0, I) // Reverse Progress:FreqPure
11: for t = T → 1 do
12: x0|t =

1√
αt

(
xt −

√
1− ᾱt ϵθ(xt, t)

)
13: (At,Φt) = F(x0|t)

14: At−1 = H(Aadv) + (1−H)(At)
15: Φt−1 = H

(
Π(Φt,Φadv, δ)

)
+ (1−H)(Φt)

16: xt−1 = F−1(At−1,Φt−1)
17: end for
18: return x0

E.2 ROBUSTNESS UNDER DIFFERENT BACKBONES

In this section, we further supplement classification experiments with CLIP (RN101), WRN-28-
10 (Zagoruyko & Komodakis, 2016) and ResNet-50 (He et al., 2016), following the same settings as
Sec. 4.1 in the main text. As shown in Table 1, Table 2, Table 7, Table 8 and Table 9, MANI-Pure
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Figure 6: Robust accuracy of several purification methods across different PGD iteration counts (All
attacks with EOT=10).

consistently achieves the best performance across different classifier architectures, demonstrat-
ing its versatility and robustness.

Table 7: Classification accuracy on CIFAR-10 under adversarial attacks using CLIP RN101. Zero-
shot CLIP (w/o defense) is denoted by †; its standard accuracy as the upper bound. Only AP-based
methods are included.

Algorithm Standard PGD AutoAttack BPDA
ℓ∞ ℓ2 ℓ∞ ℓ2

Zero-shot (w/o defense) † 78.32 0.00 26.56 0.20 0.20 2.73
+ DiffPure (Nie et al., 2022) 67.58 65.98 66.60 65.62 66.60 66.01
+ DDPM++ (Song et al., 2020) 68.95 65.62 66.99 64.45 66.80 65.62
+ REAP (Lee & Kim, 2023) 62.30 61.33 61.72 61.91 61.13 61.91
+ FreqPure (Pei et al., 2025b) 70.70 68.55 68.95 67.97 68.75 66.80
+ CLIPure (Zhang et al., 2025b) 68.95 62.89 68.75 64.26 68.84 59.18

+Ours 71.88 68.75 70.12 69.43 70.12 69.53

E.3 PLUG-AND-PLAY RESULTS UNDER ℓ2 ATTACKS

In addition to the ℓ∞ setting reported in the main text, we also evaluate the plug-and-play integration
of MANI with existing AP methods under ℓ2 attacks. Following the same configurations as Sec. 4.1,
we consider PGD+EOT and AutoAttack with perturbation budget ϵ = 0.5. The results, summarized
in Table 10, show that MANI consistently improves both clean and robust accuracy when combined
with different AP backbones.

E.4 EFFECT OF ATTACK ITERATIONS

We also examine the impact of the number of PGD iterations on robust accuracy. In our main exper-
iments, we set PGD iterations to 10. Since prior works adopt different iteration counts, we perform
an ablation to validate this choice. As illustrated in Figure 6, the robust accuracy of undefended
models decreases sharply with more iterations and converges near zero, while defense methods re-
main relatively stable with only minor fluctuations. Therefore, we adopt 10 iterations as a practical
balance between robustness evaluation and computational efficiency. Additionally, for EOT it-
erations, we follow the setting in Nie et al. (2022), which shows that robustness converges once
EOT exceeds 10.
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Table 8: Classification accuracy on CIFAR-10 under adversarial attacks using WRN-28-10. WRN-
28-10(w/o defense) is denoted by †; its standard accuracy as the upper bound. Results marked with
‡ are reported in Bai et al. (2024). Only AP-based methods are included.

Algorithm Standard PGD AutoAttack

WRN-28-10 (w/o defense) † 96.48 0.00 0.00
+Diffpure(Nie et al., 2022) 90.07 56.84 63.30
+REAP(Lee & Kim, 2023) 90.16 55.82 70.47
+CGDM(Bai et al., 2024)‡ 91.41 49.22 77.08
+FreqPure(Pei et al., 2025b) 92.19 59.39 77.35

+Ours 92.57 61.32 78.69

Table 9: Classification accuracy on CIFAR-10 under adversarial attacks using ResNet-50. ResNet-
50(w/o defense) is denoted by †; its standard accuracy as the upper bound. Results marked with ‡
are reported in Bai et al. (2024). Only AP-based methods are included.

Algorithm Standard PGD AutoAttack

ResNet-50 (w/o defense) † 76.01 0.00 0.00
+Diffpure(Nie et al., 2022) 67.84 42.58 41.53
+REAP(Lee & Kim, 2023) 68.72 43.19 44.67
+CGDM(Bai et al., 2024)‡ 68.98 41.80 -
+FreqPure(Pei et al., 2025b) 69.53 59.77 63.49

+Ours 70.31 60.03 61.79

Table 10: Plug-and-play validation of the MANI module under ℓ2 attacks. We integrated MANI
into various diffusion-based purification frameworks and evaluated them on CIFAR-10. Results are
reported both without MANI (w/o) and with MANI (w/).

Algorithm PGD AutoAttack
w/o w/ w/o w/

+ DiffPure (Nie et al., 2022) 85.74 87.08 85.55 87.50
+ DDPM++ (Song et al., 2020) 85.16 86.72 85.74 87.11
+ REAP (Lee & Kim, 2023) 79.87 81.64 80.18 81.84
+ FreqPure (Pei et al., 2025b) 91.41 92.58 92.00 93.16
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F VISUALIZATION

To intuitively illustrate the purification effect, we present qualitative results on randomly selected
samples from CIFAR-10 (Figure 7, Figure 8, Figure 9) and ImageNet-1K (Figure 10, Figure 11,
Figure 12), including clean images, adversarial images, and purified images.

Figure 7: Clean CIFAR-10 images randomly selected for visualization

Figure 8: Adversarial CIFAR-10 images randomly selected for visualization
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Figure 9: Purified CIFAR-10 images randomly selected for visualization

Figure 10: Clean ImageNet-1K images randomly selected for visualization
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Figure 11: Adversarial ImageNet-1K images randomly selected for visualization

Figure 12: Purified ImageNet-1K images randomly selected for visualization
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